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Abstract-The effective stiffness theory for fibre reinforced materials with a hexagonal layout of fibres is
presented. The theory is illustrated by the dispersion curves of plane steadystate time-harmonic waves, The
limiting phase velocities at vanishing wave numbers serve in the determination of the elastic moduli of the
equivalent homogeneous transversely isotropic medium.

I. INTRODUCTION

In Refs. [1,2] Sun, et al. developed a continuum theory for a laminated medium, which they
named "the effective stiffness theory". There the actual composite was transformed into a
homogeneous higher-order continuum with microstructure.

Achenbach and Herrmann [3] presented a simple continuum theory for a unidirectional
fibre-reinforced composite. In their model the fibres are endowed with stiffnesses against flexure,
torsion and extension. The fibres are embedded in a fictitious transversely isotropic matrix. The
elastic constants of this matrix are determined from the condition that the phase velocities of
plane harmonic waves-if the wave lengths tend to infinity-should equal those velocities in the
equivalent homogeneous material. It is therefore necessary to know the effective moduli. In this
model the displacements are not continuous at the interfaces and only the transverse wave
propagating in the direction of the fibres is dispersive.

A mixture theory modelling wave propagation in laminated and unidirectional fibrous
composites is presented in Ref. [9], It considers only the case of gross-displacements parallel to
laminates and fibres.

In Refs. [10, 11] the effective stiffness theory is applied for the case of fibres arranged in
rectangular arrays and the propagation of plane waves is studied, In Ref. [10] only continuity in
the mean is required at the interfaces of the neighbouring cells, In Ref. [11] the displacement in
the matrix inside the cell is smooth only by parts,

In this paper we shall evolve the effective stiffness theory for a unidirectional fibre-reinforced
composite with fibres arranged hexagonally, The geometry of the composite is described in
Section 2. The interaction between the fibre and the matrix and between the neighbouring cells is
taken into account by simulating point by point continuity of the displacements at the interfaces,
In Section 3, Hamilton's principle is employed to obtain the stress equations of motion, the
constitutive equations and the displacement equations of motion. Section 4 studies the
propagation of plane harmonic waves in the composite. The waves are dispersive and the
dispersion curves are compared with those reported in Refs. [3,7]. A good agreement is found to
exist for long waves. It is established that the structure of plane harmonic waves in this model is
the same as that for a homogeneous transversely isotropic continuum, the latter showing no
dispersion, For statical problems we propose to replace the effective stiffness model by a
homogeneous transversely isotropic medium the elastic moduli of which are determined in
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Section 5 by comparing the phase velocities in the homogeneous model with the phase velocities
at vanishing wave numbers in the effective stiffness model.

2. KINEMATICS

Let us consider a material consisting of two components: matrix and fibres. Both the matrix
and the fibres are linear elastic homogeneous and isotropic materials. The Lame constants and
the mass density of the fibres and of the matrix are denoted by AI. MI, P, and A2 , Ml, pl,
respectively. The infinitely long fibres are of circular cross-section with radius rl and are arranged
in a hexagonal array throughout the matrix material (see Fig. la). The fibres are parallel to the

Fig. la. Uni-directionally fibre-reinforced composite with hexagonal array.

Fig. 1b. Representative element.

x3-axis and the distance between them is 2/. A perfect bond is assumed to exist between the two
materials. The regular hexagonal prisms in Fig. 1a are replaced by circular cylinders of the same
volume (Fig. Ib). The radius of the cylinders then is

This composite cylinder will be referred to as the representative element.
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Let Xl> X2, X3 be the global Cartesian coordinates. Let us introduce Xl> X2, X3 as the local
Cartesian coordinates in the representative element with

where Xjo, X20 are the global coordinates of the axis of the representative element. Let r, 'P denote
the local polar coordinates (Fig. lb), i.e.

Xl == r cOS!.p, X2 == r sin cpo

We assume a linear dependence of the vector of displacement in the fibre, lUi, on Xh X2 and a
linear dependence of the vector of displacement in the matrix, 2 Ui, on r. We write I u" 2U, in the
form

(2.1)

(2.2)

Here IU,O(XIO, X20, X3, t) is the displacement in the axis of the fibre, 2UiO{XIO, X2o, X3, r2, 'P, t) is the
displacement on the surface of the representative element at the point with the local coordinates
r2, cp, X3. IU,O, 2 UIO, IU,O, 2UlO are discrete functions with respect to XIO, X20. The derivation of a
continuum theory calls for a smoothing operation. We replace the discrete variables XIO, X20 by
the continuous variables Xl, X2 with

and call u, "the gross-displacement". As I u" 2Ui depend linearly on i l, X2 we get for I U,o that

(2.3)

where

o/li(Xh t} == 1U,O(Xj, 0, t), o/2i(Xj, t) == 1UtO(Xj, i, t).
Neglecting the higher powers of r2, we can write

Here a comma followed by an index denotes partial differentiation with respect to the
corresponding Cartesian coordinate. The condition of continuity of the displacement at the
interfaces of the fibre gives from (2.1), (2.2) and (2.4) the following dependence of 2u,0 on 'P:

(2.5)

Here and in what follows we shall omit the dependence of the functions on Xj and time t. Using
(2.3), (2.4) and (2.5) we get (2.1), (2.2) in the form

(2.6)
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(2.7)

The state of deformation in the medium is now described by the gross-displacement U, and by
the quantities .pli> .p21' the latter describing local deformations in the representative element.

3. THE BASIC EQUATIONS

Let V be a fixed regular region of the medium. Hamilton's principle for independent
variations of U" .pli, .p2i may be written a~

af'2J (K-W)dVdt==O. (3.1)
" v

In the above equation K is the kinetic energy and W is the strain energy per unit volume of the
medium. In this paper we are interested in the propagation of harmonic waves through an
infinitely extended medium rather than in the formulation of the boundary-initial value
problems. That is why we start with Hamilton's principle in the restricted form (3.1) setting the
variations of all kinematic quantities equal to zero on the boundary of V for t I ~ t ~ t2 and in V
at times t l , t2 • To get the boundary and initial conditions we could proceed in the same way as in
Refs. [5] or [1].

The strain energy density is defined by

I 1 ,I I !
W == 2: 1\ I Eit Ekk + p.,1 E'jEij,

21,22 22
W == 2: 1\2 Eit Ekk + p.,2 Eij Elj, (3.2)

l€ij = lUO,ih 2 Eij =:2U(i.i)o

Here differentiation is taken with respect to the local coordinates XI, X2, X3. Summation of pairs of
identical indices over 1, 2, 3 is implied. The first integral in (3.2) is taken over the part of the
cross-section of the representative element belonging to the fibre, the second over that belonging
to the matrix. We can now calculate W using (2.6), (2.7). We get the following compact
expression for W:

1 1 1 1 1 1
W == 2: A1jklEljEki +2: BIJkl'YklElj +2: Cjkl'Ylj'Ykl +2: D ljklmniKljkiKlmn +2: E IjklmniKijktflmn +2: FljklmntflJktf'mn

(3.3)

with

A 1111 == A 2222 == A 3333 == T)\A I +2p.,d +(1- T)2)(A 2 +2p.,2),
A1212 == A 2112 == AI22I == A 2 !21 == A 1313 == A 3113 == A 133 ! == A3131 == A 2323 == A 3223 == A 2332 == A 3232

== T)2p.,! +(1- T)2)p.,2'

A 1122 == A 22I ! == A 1133 == Ami == A 2233 == A 3322 == T) 2A I +(l - T) 2)A2,
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B ll22 =: B2211
B 1212 = B2112

B3311 =B3322 =211 2(A2- AI),
B1221 =B2121 =B 1313 =B3113 =B2323 =B3223 =211 2

(J.L2 - J.LI),

CUll = C2222 11 2(A I +2J.LI) +(3 V -11 2
)A 2 +(7V 211 2

)J.L2'
CI2l2 = Cml 1/ 2J.L1 + VA 2 + (5 V _1/2)J.L2'

C m l = C2lI2 = 1/2J.LI + VAz + (V 11 2
)J.Lz,

C 1I22 = C22l1 1/2A1 +(V -11 2)A2 + VJ.Lz,

CI313 = CZ323 11 2
J.L] +(4 V -1JZ)J.L2'

(3.4)

The other components of tensors AijkC, Bijk/, C;jkl. Dijklmn, E,jklmm F;jklmn are zero. In (3.3) Eij, 'Yij, ~jk,

tJ'ijk are defined as follows:

Eij = U(i,j) for i,j = 1,2,3
'Yaj = Ul,a -I/Jaj, t'13aj = 'Yaj,3, 'Jt3aj = "'aj,3 for j 1,2,3; a = 1,2.

The other components of Eii, 'Yij, t'1iik, ~jk are zero. In (3.4) it is

It is seen that the form of W in (3.3) is the same as that in eq. (7) of [2].
The kinetic energy density K is defined by

(3.5)

and with the aid of (2.6), (2.7) we get

1,2d- d- II Ip] Ui XI Xz+ z
2 p

Z,2d- d-)P2 Ui XI X2

where

IJSS Vol 11 No 2-E
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From now on we proceed analogously as I2l for a laminated material. We define the stress tensors

oW
Uri = 0Yli'

ilW
p.ii/< = ~<lrP•• '

UdI.t)k.
(3.7)

and calculate the variations 5K, 5W. With their substitution (3.1) yields the following stress
equations of motion

'Tif.; -+- mj.i - Xkii.ik - J>r"" 0, j = 1,2,3
(3.8)

where

;=1,2,3; 0:=,1,2.

Substituting (3.7) and (3.3) into (3.8) gives the displacement equations of motion

a\UI,lI + a2UI.22 + a3UI.33 + a4U~.12 + a5U3.13 + G6(UI.l 313 + UI.2m) +a,l/IlI,l + a8(lfIt2,~ +- t{J~2.1) + a91/121.2

+- aIOt{JI3.3 + all(t{JII,313 + 1/121.323) -+- a12U' -+- al3(Ul,Il -+- U1.22) -+- a'4(~Il" -+- J;zd = 0, (3,9)

alSU3.31 +aU;(u3.H + U3,22) -+- os(Ul.lS + uus) +01,(U3,1313 + U3.ll23) -+- 018(1/111.3 + !/In,»)
+ a19(l/J13.1 -+- !/I2U) -+- a20(l/Jt3.313 + l/J2,.323} + auii,+ a13(i13.11 + ihn) + a14(tfr13,l -+- ~3.2) = O.

(3,10)

where

a, = (3V + l),h+{7V +2)P.2,
a3 = 'YI:.';P,,+(l-11~P.",

a7"" -. V(3A2+7P.2),
0,,= -V(A2 +5,ud,

Z
all = -'2 P,z,

02 = VA2 -+- {5V + 1)P.2,
a4 = (lV -+- 1)(A2 -+- !k2),

X
a6 = P.2,

a8 = - V(A~+ /L2),
am = r;Z(/Ll - pd,

an = -jj,



where
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x Z
al3=i Pz, aI4=2"PZ,

alS = 1)\A , +2p,,) + (1-1)2)(Az+ 2p,z),
X

al6 = (4V + I)JLz, al7 = -i(Az+2JLz),

alS = 1)Z(A , - Az), al9 = -4 VJLz,

Z l(r; Z yazo = - 2" (Az+2JLz), aZI = 2 21J JLI + JLz),

an = -[1)Z(A , +2JL,) + (3 V -1Jz)Az+ (7V - 21JZ)JLzl,
aZ3 = -(1) zAI +(V -1)z)Az + VJLz]' aZ4 = -J,
azs =-[1)ZJLI + VAz + (5 V -1J Z)JLz],
aZ6 = -[1)ZJLI + VAz + (V -1)Z)JLz),

1 [rlZ Z ]aZ7 = 2 21J (AI + 2JL') + Y(A z+ 2JLz) ,

aZ8 = -[1Jzp,J + (4 V -1Jz)JLzl.
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(3.14)

Because the problem is symmetric about the x3-axis, the remaining four equations of motion can
be obtained from (3.9), (3.11), (3.12) and (3.13) on replacing in Uh l/Jaj and their derivatives index 1
by index 2 and the other way around.

4. PROP AGATION OF PLANE HARMONIC WA YES
IN A FIBRE REINFORCED COMPOSITE

The displacement equations of motion will be used to study the propagation of plane
time-harmonic waves. Because of symmetry about the xraxis, we may restrict ourselves
without any loss of generality-to a wave of the form

In the above equation Vi, 'I'ai (i 1,2,3; ex = 1,2) are constant amplitudes, k is the wave number,
c is the phase velocity, and ni are the components of the unit vector defining the direction of
propagation. The nine displacement equations of motion split into two systems for rh, 'I'ai :

System I for V" 'l'IZ, 'I'Z1, '1'13:
V,e[-n/az - n/a3 + en/n/a6 - cZan + czen/a'3] + 'l' 12iknzag

+'l'ztik[nZa9 - enZn/all - czenZa'4] +'l'13ikn3alO = 0,
- V,iknzag + 'l'IZ[-en/az, - c zeaZ4 + azs) + 'l'zlaz6 = 0,

- V,ikn3alO+ 'l'13[-en/a27- CzeaZ4 + aZ8) = 0,

V,ik[-nZa9 + enzn/all + Czeal4] + 'I',zaz6 + 'l'zl[-en/az, - Czea24 + azs) = 0.

System II for Vz, V3, 'I'll, 'l'zz, 'l'Z3:
Vze[-n/al - n/a3 + en/n/a6 cZal2 + czen/al3) - V3enZn3aS +'l'lliknzas

+'l'n ik[nZa7 - enzn/all CzenZa,4) +'I'z3ikn3alO = 0,
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- Uzk2n2n3a5 + U3k
z[-n/alS - n/a16 + kZn/n/aI7 -- cZan + ezen/al3] + 'JIl1ikn3a18

+ 'JI22ikn3aI8 + 'JIz3ik[nZaI9- k'n2n/a20 - czen2al41 = 0,

U2ikn2a8 - U3ikn3a18 + 'JI11 [a02 - en'>a21 - e2k'a24] + 'JI22an = O.

U2ik[-n2a7 + e112n3zall + cZk'n2a14] - U3ikn3alR + 'JI ll a23 +'JIda22 - k2n3za21 - ('zea24J = 0,

- U2ikn3alO + U3ik(-nZa l9+k'l1zl1/a2o + c2k2n2a 14] + 'JI23 [aZ8 - en32an - c2k'a24] =:= O.

Let us first examine system II. On setting 112 = 0, system II splits into two groups of equations.
In the first group we have two equations for U2, 'JI23 and get a transverse wave (macroscopically)
propagating in the direction of the fibres. In the second group we have three equations for U3 •

'JIll, 'JI22 and the wave is longitudinal, propagating in the direction of the fibres. On setting 113 =:= 0,
system II splits again. In the first group there are three equations for U2' 'JIll, 'JI22 which represent
a longitudinal wave propagating normal to the fibres. The other group contains two equations for
U3, 'JI23 and we get a transverse wave polarized in the x2x3-plane, travelling normal to the fibre~.

On setting n3 =:= 0 in system I we obtain three equations for U" 'JI 12, 'JI21 and this wave is
transverse polarized in the x IX2-plane, travelling normal to the fibres. The substitution 112 =:= 0
yields two equations for U], 'JI 13. Because of symmetry about the x3-axis these equations are the
same as those for U2 , 'JI23 obtained from system II with 112 = O.

All the systems of equations for the amplitudes are homogeneous. We get non-trivial solutions
only if the characteristic determinants of the systems are zero. These conditions give us the
sought-for dispersive relations. For a transverse wave propagating in the direction of the fibres
the dispersion relation between c and k is

For a longitudinal wave in the direction of the fibres we get

e6k4
al2a~4 + e4[k 4a24(a 15a24 +2a12a21) - e·2a12a22a24

+c 2[k4'a21(a 12a21 +2a1Sa24) - e·2{a24(aISa22 + a ~8) + a12a2Ia22} + al2(a~2 - a~3)1 +e a 15a~\

- k2·2aOl(aI5a22 +a ~8) +(a2l - a23)(aIS(a22 + aZ3) + 2a~8] O. (4.2)

We shalI not state here the dispersion relations for the other waves but shaH write instead the
expressions of the phase velocities °c of the lowest mode at vanishing wave numbers for alI the
types of waves which we shalI need later on.

(a) The transverse wave propagating in the direction of the fibres:
(4.1) yields

°e 2
=:= lim c 2

=:=

k->O

a3a28 + a~o

a12a28
(4.3)

(b) The longitudinal wave propagating in the direction of the fibres:
(4.2) yields

a15(an + an) +2a ~8

a12(a22 +al3)

(c) The longitudinal wave propagating normal to the fibres:

(4.4)
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(d) The transverse wave polarized in the x 1x2-plane propagating normal to the fibres:

(e) The transverse wave polarized in the x2x3-plane propagating normal to the fibres:

a16a28 + ai9
a12a2S

207

(4.5)

(4.6)

(4.7)

(f) The plane wave polarized in the x2x3-plane propagating in the direction parallel to the
x2x3-plane. For such a wave we have

For °c of this wave system II yields the following condition:

(4.8)

where

al = ai2a2S(a~2 - a~3)'

a2 = a12(a~2 - a~3)[a i9 +a28(al +aI6)] +a12a2S[a2la/ +a/) - 2a7aSa23],

a3 = a12(a~2 - a~3)[aio + a28(a3 +ad] +2a12aisa2S(an - a23),

a4 = (ai9+ a16a2S)[al(a~2-a~3)+ an(a/+ a/)- 2a7aSa23],

a5 = (an - a23)(a3a2S + aiO)[alS(a22 + a23) +2ais],

(16 = (a~2 - a~3)[aI6(a io + a3a2S) +a3(ai9 + a16a2S) - a/a2S] +2(a23 - a22)a18(a7 + as)
x (alOal9 + a5a2S) +a2S[(a/ +as

2
)(ais +alsad - 2a7aS(a is + aISa23)].

Because U2¥- 0, U3¥- 0 such a wave is neither longitudinal nor transverse for n2 ¥- 0, n3 ¥- O.
Figure 2 shows the lowest modes of the dispersion curves for the transverse wave propagating

in the direction of the fibres. In place of c, k there are plotted there the dimensionless quantities
{3, g defined by

The solid lines in Fig. 2 correspond to (4.1). aij in (4.1) are given by (3.14). The curves are drawn
for the special choice of 'T/ 2 = 0,6, i} = 3, VI = V2 = V = O·3, and for two values of 1': I' = 10,
I' = 100. Here we write

Va = 2(Aa + l1-a)' a=1,2; 1'=11- 1
•

11-2
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-----//'--"'-- T= /00

// Achenbach -!-Ierrmann[J]
/ or-too
. /0

"'. Wheeler-Mura [7]
'\

"""", 1'=/0
>><..:. Achenbach-lIerrmann[J]

1'=10 ./ ............
\ /-----~

~__ - ~-::-.---->L;r=.'~. Wheeler-l1ura [1]1_-.-_--.-.

Fig. 2. Dispersion curves for transverse waves in the direction of fibres.

In the above, VI and V2 are Poisson's ratios of the fibres and of the matrix, respectively. The
dashed lines correspond to the theory of Achenbach and Herrmann [3] for randomly arranged
fibres. The dot-and-dashed lines are taken from [7]. Using the Ritz method, Wheeler and Mura[7]
give approximate curves for a fibre reinforced material with the fibres arranged in a square array.
Figure 3 shows the lowest modes of the dispersion curves for the longitudinal wave propagating
in the direction of the fibres. The solid lines correspond to (4.2) of this paper, the dot-and-dashed
lines are taken from [7]. In the theory evolved in [3] this kind of wave is non-dispersive.

Figures 2 and 3 show a good agreement between all the curves for small wave numbers, Le.
for long wave lengths. A certain discrepancy in Fig. 2 for k ~O between the approximate curves
taken from [7] on the one hand, and the curves of the present effective stiffness theory and those
of the theory of [3] on the other hand, should be ascribed to the circumstance that a square array
of fibres was considered in [7]. Unfortunately, the exact dispersion curves are not at our disposal.

f3
10,0

8,0

6,0

",0

2,0

TJ2=0,6

J'=3
r=/oo

\
\/1'=/00
'f Wheeler-l1ura UJ

\
'"". ./ r= /0

0~~~===
Wheeler-l1ura UJ

°'------.-,>-------1----->-5a (0 ~o ~o

Fig. 3 Dispersion curves for longitudinal waves in the direction of fibres.

5. PROPAGATION OF PLANE HARMONIC WAVES IN A
HOMOGENEOUS TRANSVERSELY ISOTROPIC MATERIAL

Propagation of plane harmonic waves in a homogeneous transversely isotropic material was
examined by Postma[4]. We shall show that the structure of these waves in this continuum is the
same as their structure in the effective stiffness theory presented in the foregoing paragraphs.
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Let us write the constitutive equations of a transversely isotropic medium axially symmetric
about the x3"axis in the form

with

C66 = Cll - Cu.

There are five independent constants, CII , C12, Cn, C33 and C44• For the wave

the displacement equations of motion lead to the following equations of the amplitudes Vi:

(pc 2 Clln/ - C44n/)U2- (Cn + C44)n2n3U3 = 0,

-(Cn +C44)n2n3 U2+(pc 2 - C44n/ - C33n/)U3= o.

(5.1)

(5.2)

(5.3)

In the above p stands for the mass density. (5.1) corresponds to system I, (5.2) and (5.3)
correspond to system II of Section 4. Using the same procedure as in Section 4 we get the
following waves and the corresponding phase velocities c:

(a) The transverse wave propagating in the direction of the fibres:

(b) The longitudinal wave propagating in the direction of the fibres:

2 C33
C =-.

P

(c) The longitudinal wave propagating normal to the fibres:

(d) The transverse wave polarized in the xlxrplane propagating normal to the fibres:
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(e) The transverse wave polarized in the x2x3-plane propagating normal to the fibres:

(f) The transverse wave polarized in the x2x3-plane propagating in the direction parallel to the
x2x3-plane:

p2C4 - pc 2[n/(C tl + C44) + n/(C33 + C44 )] + n/C tI C44 + n34C33C44
+ n22n/[C~+C lt C33 - (CIJ +C44)2] = o.

The effective stiffness theory presented in this paper is a long-wave approximation of the
dynamical behaviour of a fibre reinforced composite. For the statical problems we replace the
composite by a homogeneous transversely isotropic medium. In order to obtain the material
constants we compare the phase velocities of the non-dispersive waves (a-f) in the homogeneous
transversely isotropic material with the phase velocities °c at vanishing wave numbers in (4.3) to
(4.8) for the corresponding waves (a-f) in the effective stiffness model. The result is

2 2
C

44
= U 16U28 + U 19 U3U28 + a 10,

U28 a28

C - U15(a22 + a23)+2ais
33 - an + a23 '

(5.4)

On substituting for aij from (3.14) we finally arrive at the sought-for moduli

C
_ 1/ 2(Y - 1)(4 V + 1) +4 V

44- 1/2(y-t)+4V /-L2,

{

2 1j\yEt - E2)2 }
C33= 1j (y51-82)+82-1j2[y(51-t)-(8z-l)]+2Vfh /-L2,

{
21j2 V8z(YEt-E2)}

C13 = (82 -2)+ 1j2[y(8 t-1)-(82-t)]+2V82 /-L2,

Cll = {52 + V(382 + 1)

V 2(1j2[(Y - 1)(352 + 1)(82 - 1) + (y5t - 52)(52 + tf] + 2V5i35 2 + 1)(82+ I»}
- [1jl(y -1)+ V(52+ 1)][T/2(y(81-1)-(lh-l»+2V82] /-L2,

(5.5)
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" = 2(1- v,,)
U" 1-2v" ,

2v" 1 2
E" = 1-2v,,' a = , .

6. CONCLUDING REMARKS

There remains the open question of what is generally the relation between the moduli (5.5)
which we get for vanishing wave numbers, and the effective moduli which are a geometrically
weighted average of the properties of the constituents. For a laminated medium we know the
exact effective moduli and the exact dispersive curves, and in this case the two systems of moduli
are equal.

For the case of laminated composites a higher approximation of the effective stiffness theory
was elaborated in [8], with the stress vector continuous at the layer interfaces. This second-order
approximation provided a substantially better approximation to the exact elasticity solution for
shorter wave lengths but the phase velocities °c at vanishing wave numbers were the same as in
the first approximation and thus the same as the exact °c [1].

The effective stiffness theory presented herein for fibre reinforced composites is the simplest
approximation involving continuity of the displacements at the interfaces while leaving the stress
vector discontinuous. We do not know the exact °c for this case. As the displacement (2.6)-(2.7)
is kinematically admissible the moduli (5.5) should be larger or equal to those obtained from the
exact °c.

For a fibre reinforced composite with a hexagonal layout of fibres, Hashin and Rosen[6]
reported the lower and the upper bound of the effective moduli. The moduli defined by (5.5) lie
within these bounds. For randomly distributed fibres [6] states the approximate magnitudes of
Cn, C33 , C44 and ~(Cl1 + Cd, for ~(Cll - Cd giving again the lower and the upper bound. It was
found that Cn, C33 , C44 and ~(Cl1 +Cd calculated from (5.5) for 'Y = 10, 'Y = 100 and 1/2E(0, 1) are
very close to the approximate effective moduli given in Ref. [6] for randomly distributed fibres.
The difference is less than 1 per cent.
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