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Abstract—The effective stiffness theory for fibre reinforced materials with a hexagonal layout of fibres is
presented. The theory is illustrated by the dispersion curves of plane steadystate time-harmonic waves. The
limiting phase velocities at vanishing wave numbers serve in the determination of the elastic moduli of the
equivalent homogeneous transversely isotropic medium.

1. INTRODUCTION

In Refs. [1,2] Sun, et al. developed a continuum theory for a laminated medium, which they
named “the effective stiffness theory”. There the actual composite was transformed into a
homogeneous higher-order continuum with microstructure.

Achenbach and Herrmann[3] presented a simple continuum theory for a unidirectional
fibre-reinforced composite. In their model the fibres are endowed with stiffnesses against flexure,
torsion and extension. The fibres are embedded in a fictitious transversely isotropic matrix. The
elastic constants of this matrix are determined from the condition that the phase velocities of
plane harmonic waves—if the wave lengths tend to infinity—should equal those velocities in the
equivalent homogeneous material. It is therefore necessary to know the effective moduli. In this
mode] the displacements are not continuous at the interfaces and only the transverse wave
propagating in the direction of the fibres is dispersive.

A mixture theory modelling wave propagation in laminated and unidirectional fibrous
composites is presented in Ref. [9]. It considers only the case of gross-displacements parallel to
laminates and fibres.

In Refs. [10, 11] the effective stiffness theory is applied for the case of fibres arranged in
rectangular arrays and the propagation of plane waves is studied. In Ref. [10] only continuity in
the mean is required at the interfaces of the neighbouring cells. In Ref. [11] the displacement in
the matrix inside the cell is smooth only by parts.

In this paper we shall evolve the effective stiffness theory for a unidirectional fibre-reinforced
composite with fibres arranged hexagonally. The geometry of the composite is described in
Section 2. The interaction between the fibre and the matrix and between the neighbouring cells is
taken into account by simulating point by point continuity of the displacements at the interfaces.
In Section 3, Hamilton’s principle is employed to obtain the stress equations of motion, the
constitutive equations and the displacement equations of motion. Section 4 studies the
propagation of plane harmonic waves in the composite. The waves are dispersive and the
dispersion curves are compared with those reported in Refs. [3, 7]. A good agreement is found to
exist for Jong waves. It is established that the structure of plane harmonic waves in this model is
the same as that for a homogeneous transversely isotropic continuum, the latter showing no
dispersion. For statical problems we propose to replace the effective stiffness model by a
homogeneous transversely isotropic medium the elastic moduli of which are determined in
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Section 5 by comparing the phase velocities in the homogeneous model with the phase velocities
at vanishing wave numbers in the effective stiffness model.

2. KINEMATICS

Let us consider a material consisting of two components: matrix and fibres. Both the matrix
and the fibres are linear elastic homogeneous and isotropic materials. The Lamé constants and
the mass density of the fibres and of the matrix are denoted by A, wi, pi and A, g, pa.
respectively. The infinitely long fibres are of circular cross-section with radius r, and are arranged
in a hexagonal array throughout the matrix material (see Fig. 1a). The fibres are paralle] to the

Fig. 1b. Representative element.

xs-axis and the distance between them is 2I. A perfect bond is assumed to exist between the two
materials. The regular hexagonal prisms in Fig. 1a are replaced by circular cylinders of the same
volume (Fig. 1b). The radius of the cylinders then is

2

r4

1y

Y

rg=1

This composite cylinder will be referred to as the representative element.
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Let x,, x;, x5 be the global Cartesian coordinates. Let us introduce £, .. %5 as the local
Cartesian coordinates in the representative ¢lement with

X=xC4 %, X=X+, X=X,

where x.°, x,° are the global coordinates of the axis of the representative element. Let r, ¢ denote
the local polar coordinates (Fig. 1b), i.e.

Xi=rcosy, X:=rsine.
We assume a linear dependence of the vector of displacement in the fibre, ', on %, £ and a
linear dependence of the vector of displacement in the matriX, “u, on r. We write ‘&, 4 in the
form
Iui (xig t) = luiu(xloy x201 X3, t) +r ](Jio(x107 x20~ x37 @, t)7 (2 1)

21/11 (x, t)= 2uio(xto’ xzog X3 ¥z, @, ty+H{r—ry) 2U£O(Xxe, xz(}, X3, O, t). 2.2

Here 'u"(x.°, x2°, X3, t) is the displacement in the axis of the fibre, *u’(x.’, x2°, X3, 72, ¢, £} is the

displacement on the surface of the representative element at the point with the local coordinates

ra @, X3, w0, 2w, VU, PUY are discrete functions with respect to x,°, x.°. The derivation of a

continuum theory calls for a smoothing operation. We replace the discrete variables x,°, x,° by
the continuous variables x,, x, with
(s, O =1, 0, o, Y= w{x;, 1)
and call u; “the gross-displacement”. As 'u;, *u; depend linearly on %,, %, we get for ' U? that
! {}ia(xfs &, I} = if};g(x;, I) cos ¢ + Q{fzg (xj’ t) Sin s (2‘3)
where
(p”(xf’ t) = ll]io(xjs 09 r)v $2i(xiy t) = lljln (xj! _;Z’ t)-

Neglecting the higher powers of r,, we can write

Ui(Xi+ r2COS @, X2+ 2 8in @, X3, 1) = 4 (X;, 1)+ ral i1 (X 1) €OS @ + wia(xi, t) sin @] (2.4)
Here a comma followed by an index denotes partial differentiation with respect to the
corresponding Cartesian coordinate. The condition of continuity of the displacement at the
interfaces of the fibre gives from (2.1), (2.2) and (2.4) the following dependence of U on @:

(r2= 1) 2U@) = rottiny €08 @ + i sin @) = r, 'Ug). 2.5)

Here and in what follows we shall omit the dependence of the functions on x; and time ¢. Using
(2.3}, (2.4) and (2.5) we get 2.1), (2.2} in the form

o=+ Xt + Xazs, 2.6
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2 r—nr .
U =U2tCOS @ [rzu,-_l +;‘—r (rau;, — rll/lli)] +sim ¢ [rzui,2+
27N

Aa: (rzui,l" rlillz.‘)]. Q2.7
2 r

The state of deformation in the medium is now described by the gross-displacement u; and by
the quantities ., ¢, the latter describing local deformations in the representative element.

3. THE BASIC EQUATIONS

Let V be a fixed regular region of the medium. Hamilton’s principle for independent
variations of u;, Y., ¢ may be written as

5va (K - W)dV dt =0. G.)

In the above equation K is the kinetic energy and W is the strain energy per unit volume of the
medium. In this paper we are interested in the propagation of harmonic waves through an
infinitely extended medium rather than in the formulation of the boundary—initial value
problems. That is why we start with Hamilton’s principle in the restricted form (3.1) setting the
variations of all kinematic quantities equal to zero on the boundary of V for t; <t <t,andin V
at times t,, f,. To get the boundary and initial conditions we could proceed in the same way as in
Refs. [5] or [1].
The strain energy density is defined by

(j f 1wdf:dfz+ffzwdf,diz>,
IF ZF

1 1
1 [ t 2 2
w = i At € €t by €€, W = 5 Az Giiszk + M—zzfijzfij, (3.2)

W:

1
s

1 2 2
€ = Uup, €& = HUaj.

Here differentiation is taken with respect to the local coordinates X, X2, x3. Summation of pairs of
identical indices over 1, 2, 3 is implied. The first integral in (3.2) is taken over the part of the
cross-section of the representative element belonging to the fibre, the second over that belonging
to the matrix. We can now calculate W using (2.6), (2.7). We get the following compact
expression for W:

1
2

1
2

1

1 1
Bukl‘)‘kléu +§ Cijkt‘Yij’Ykz + E Dijklmn%ﬁk%mn + 3

1
W=z Aukléi,fkt +

2 E ijklmn%iikﬂlmn +

F ijklmn’ﬂ!jk'almn
(3.3)
with

Ann=Anpn=Ann= 1]2()\1 +2u) + (1~ 1]2)()\2+ 2u3),
A= A=A = A1 = A= Az = Az = Asin = Az = Ay = Ann = Ann

=n’pi (=1, ] .
Ann=Ann = A= Ann = A3 = Anip = nA+ (1- n Yz,

By = Byo = 2772[()\2” Ai)+ 2pe - il
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Bi12 = B2u = Bisyy = Bam = 21)2()\2 =X

Biziz= Baiz = By = B2z = Bisis= Bajn = B2z = Bys = 2712(#2" #1),

Ciun=Cox= 7}2(/\1 + 2#1)+(3V - 172))\2+(7V - 27?2),“%
Cie=Can = 7’12#1 + VA, +(5V ~ 712)1“'2,

Cizi = Con = 1?211«1 + Vi +H(V ~ ’?2)#%

Crizz = Coapy = 7)2)\1 +{(V - ,nzM2+ Vo,

Ciiz=Cap = 'T]zlLl +(4V - 7)2)#2,

2 1= 7
Dsi33i3= Dsazzzs = % [7}2(/\1 +2p)+ "?277 (A2 +2u2)],

hz

1-7n*
T(”izﬁh‘*‘ 712 Pvz),

Dsiisin = Dapsiz = Dazian = Dizrsar =

3 - — 2 - 3
Esi33= Bz = rﬁ___ﬂ___'ﬂz_____j_ (A2 +2u2),

67

J—p—ni-n’

Esinn = Enme = Esnsn = Espan = r{z___ﬂ#“_'f?_ Mezs
3-2n~n°
Fi13313 = Fapsans = 7'12“_‘1"‘—2‘1’7’” (A2 +2p2),
12
3-2y-17°

Fsinn = Faizse = Faan = Fapae = rlb“‘_I’zﬂq‘?Tg“ K2

203

34

The other components of tensors Ay, Bk, Ciit Dijkimns Eiimns Framn are zero. In (3.3) ey, vy, #in,

& are defined as follows:

€ =Uuy for ij=1,2,3
Yoi = lha = ois  D3aj = Vaiss Hsaj = s for j=1,2,3; a=12

The other components of €, i, %, K are zero. In (3.4) it is

_n z

S
=y =Tal-qpEn

It is seen that the form of W in (3.3) is the same as that in eq. (7) of [2].
The kinetic energy density K is defined by

I &1 .
'71"'52};:1 (’z‘f f pllﬁgzdfl df2+%f j pzzl.lizdfgdf2>
g 2g

and with the aid of (2.6), (2.7) we get

K:

K =3 i+ I3+ 030+ 2[5 b+ i+ 2+ ) ]|

[T

where
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(3.6
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S, P z s 0s f—n
p=n"p+t(1-nIps X=ri—Z"1, ﬁ%{p:vz‘+%ﬁ(l+2n~3n2)]' Z:rf——(;?m

From now on we proceed analogously as [2] for a laminated material. We define the stress tensors

aw aW 3w aW

i £ ik T mogp ¥ ik o 73-
e dey” o ayy e 3H i Xiie 3y 3.7

and calculate the variations 8K, sW. With their substitution (3.1) yields the following stress
equations of motion

Tij.f‘%‘{?‘e'?.i'—x&fg"ik"p}&{}‘ f‘—‘i‘?‘,f}
(3.8
Pk~ Ywix T oy —~ Qy=0, i=12; j=12,3
where

Py = gt — 5 pol Xy + i} + Zi{dry + el

Qau‘ = Jd}m‘ +%p22uiym i= 1’2’3; o= 1’2

Substituting (3.7} and (3.3) into (3.8} gives the dispiacement equations of mofion

@l gt Qelly g+ sl 3z + Qaltagn + GsUsas T GelUiass + Ui2as) + Ay + as(ane! + s i} F Gotfrar 2
+ @yottias + Qo+ Y + el + d@s(liyg + i) + a;a(i,bn T i,[fzn =0, (39

Buslan+ Gllan + 2} + sl 3+ W) + @l My 03+ Haosm) + Gl s + dhazs) . B
+ @sslifress + W) + Gaol@nsn + Yn s} + Gudis + Gl + e+ aulon s =0,
(3.10)

azﬂl/n,w + Gpifu + aza'lfzz““ Arltyy ~ Qallyz = Qiglas — Ayl s+ Qe — (haiiy, =0, (311)

Stz + dastg + Gostn — dells — dolta; — Gulhan + Gpaln — dulle = g, {3.12)
Azt azall:'m — Qiolrs — Qo — Gaolbz31a + Aoalfriz = Galisy = 0‘1 (3”)

where

a;=03V+ §}:“§3‘§'{?V“§‘2}}92Q &= sz+{5‘i"+§}@z,

as=n"p+ (1 -7 ), &= RV + DA+ g2}
aS:";A2+I-"2$ a(.—'”"'i

a; =~ V({3 + Tua), ag = *"}"(/\:4 + 1),

as =~ V(A +5p2), Q=" — Bz

&n""“‘“"z'pﬁ; Gu= "0
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_X _Z
aiz= ) P2, A4 = 5 P2,
ais = 1}2()\1 +2!1'1)+{1 - 7}2)(/\2‘}'2,“2),
@16 = AV + Dpzz an=—3 s+ 2p2),
Qs = 1}2(A1 - /\2), dw = "4V[J«z,
a :—Z(/\ +24t2) a =l(f—'—2 21+ Yus)
20 3 2 H2), 21 2 2'!751,1 Ha)s

an = “{7?2(:\1 +2u)+(3V ~ 772)/\2+(7V _21?2)“‘2]’
axn = "[7]2)tl +(V =1+ Vi), a2e=-1J,
das = —[T’zﬂ,] -+ V/\2+ (5V - nz)l‘l’zl’
A6 = “[712}"1 +Vh+ (V- nz)“‘Z]"
1 2
az?zé [LZI_ 7}2(;\1+2“!)+ Y().2+2}Lz):lp

az=—[n"pi+ @V - n2pu.l.
where

2
Y:-’é—(wzn =377 (3.14)

Because the problem is symmetric about the xs-axis, the remaining four equations of motion can
be obtained from (3.9), (3.11), (3.12) and (3.13) on replacing in u, ¢.; and their derivatives index 1
by index 2 and the other way around.

4. PROPAGATION OF PLANE HARMONIC WAVES
IN A FIBRE REINFORCED COMPOSITE

The displacement equations of motion will be used to study the propagation of plane
time-harmonic waves. Because of symmetry about the xs;-axis, we may restrict ourselves—
without any loss of generality—to a wave of the form

—- h{n, Xyt i Xt} — fhin,x dnyx,—ct)
= U, e™ T s = We e,

In the above equation U, Y., (i = 1,2, 3; a = 1, 2) are constant amplitudes, k is the wave number,
¢ is the phase velocity, and n; are the components of the unit vector defining the direction of
propagation. The nine displacement equations of motion split into two systems for U, V.

System I for U, ¥12, ¥a, ¥is
U;kz[—nzzaz - ﬂszaa + k2n22n32a6 - C2a12 + Czkznzzaw] + W ,iknaa.
+ Wik [n2as — k*nansay ~ ¢k’ naa.4] + Viaiknaaw =0,
—U,ikn,as+ \If,z[—kznszazl ~ a2+ aas]+ Vs a26 = 0,
—Usiknsa + ‘Fns[_szbzaw - Czkzazd + ax] =0,

Uiik[~n.a0+ knanilay, + Czkzam] + ¥ a2+ Va—k’nsas — ’k*azq + a25] = 0.
System II for U, Us, V11, ¥pa, V!

2 .
Uzk ["n22al - '132613 + k2n22n3206 - czan + czkznzzau] - U3k2n2n3a5 -+ ‘Putknzag
+ q’zzl‘k [nzaar - kzﬂznazan - czkznzau] + ‘I’zgik?hﬁm = 0,
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- Uzkznzngas + Uskz[—n,xza;s - lezam + klnzzl’bzan - Czalz + Czkznzzalsl + W, iknsa.s
+Wyiknaas+ ‘stik[nzaw‘“ k2n2n3zazt3‘ ('2k2n2£1;4] =40,

- Uzikﬂzag - U;iknsals + q"n[a:z - k2ﬂ22(121 - C2k2a24} + \Pzzaz,z =0,
Uzlk [—n2a7 + kznzn,zza,, + Czkzﬂzam] - U}ik’ham + ‘I'nazg + \I’zz[a:z el k2n32(121 e ('zkzazd = (),

“Uzl.k’ham”f‘ U;ik[—nza.9+ k2n2n32azo+ C2k2n20|4] +\P23[azs" k2n3zaz7— Czkzazq] = (),

Let us first examine system I1. On setting n, = 0, system II splits into two groups of equations.
In the first group we have two equations for U, ¥, and get a transverse wave {macroscopically)
propagating in the direction of the fibres. In the second group we have three equations for Us.
¥y, V22 and the wave is longitudinal, propagating in the direction of the fibres. On setting n. = 0,
system II splits again. In the first group there are three equations for U,, ¥, ¥, which represent
a longitudinal wave propagating normal to the fibres. The other group contains two equations for
Us, ¥ and we get a transverse wave polarized in the x,x.-plane, travelling normal to the fibres.

On setting n; =0 in system I we obtain three equations for U,, ¥,,, ¥, and this wave is
transverse polarized in the x,x,-plane, travelling normal to the fibres. The substitution 1, =0
yields two equations for U,, ¥;. Because of symmetry about the xs-axis these equations are the
same as those for U,, V.; obtained from system II with n.=0.

All the systems of equations for the amplitudes are homogeneous. We get non-trivial solutions
only if the characteristic determinants of the systems are zero. These conditions give us the
sought-for dispersive relations. For a transverse wave propagating in the direction of the fibres
the dispersion relation between ¢ and k is

k2 Q12G2a+ [k (@120 + Q2820) — G12a2e] + ka:827~ (@325 + a7} = 0. 4.
For a longitudinal wave in the direction of the fibres we get

c6k4a‘2a§4 + c4[k4az4(a15az4 + 261130:1) - k2-2ana22a:4
+ 021k an(@ s + 2@:5a24) ~ k72 a2 15022 + @)+ A2z an}+ anlad~ anh))+ kaisa’s
- kz'zazt(axsﬂzz + Gfs) + (G2 — azllais(da + an)+ 26%&] ={, 4.2)

We shall not state here the dispersion relations for the other waves but shall write instead the
expressions of the phase velocities °c of the lowest mode at vanishing wave numbers for all the
types of waves which we shall need later on.

(a) The transverse wave propagating in the direction of the fibres:
(4.1) yields

2
dslas+ A1

°ct=lime®=— 4.3)
k-0 a12028
(b) The longitudinal wave propagating in the direction of the fibres:
(4.2) vields
o .z:waxs(azz+ azz)+2afs (4.4)

a,2(ax+ a23)

(c) The longitudinal wave propagating normal to the fibres:
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002 = a(a %2 - 053) ~2a,a3a2 + 022(072 + (182)

4.5
012((1%3 - a%z) “3)
(d) The transverse wave polarized in the x,x,-plane propagating normal to the fibres:
0.2 az(ags - a§6) — 20509026+ azs(asz + 092)
= 5 5 . 4.6)
a12(as — ass)
(e) The transverse wave polarized in the x.x;-plane propagating normal to the fibres:
00t = _Giedzs t af9. 4.7)
a12028

(f) The plane wave polarized in the x.x;-plane propagating in the direction parallel to the
X2xs-plane. For such a wave we have

U1 =\P12=\I’21 =\P13=0, n =0.
For °c of this wave system II yields the following condition:

°ctar+°cHnl e+ nes) + notas+ nstas + nona’as = 0, 4.8)
where
o= a%zazs(a 2—an),
Q2 = alz(a§2 - a%s)[d%sa + azs(a, + am)] + 012028[022(072 + 082) —2a,asax),
az = a12(a§2 - a§3)[afo + azs(aa + 015)] + 2012(1%8028(022 — G2),
as=(als+ alsazs)[ax(a§2 - a%s) + 022(072 + a82) —2a,03a2)],
as = (a2 — a3)a30+ a?o)[axs(azz +dax)+ 20?8],
0N = ((1%2 - 053)[016(0%0 + 03028) + as(a%9 + A16028) — aszazs] + 2(023 —axn)ais(a; + as)

X (010019 + asazs) + azs[(a72 + asz)(a?s + alSaZZ) - 207“3(0%8 + a15a23)].

Because U, #0, U; # 0 such a wave is neither longitudinal nor transverse for n, #0, ns # 0.

Figure 2 shows the lowest modes of the dispersion curves for the transverse wave propagating
in the direction of the fibres. In place of c, k there are plotted there the dimensionless quantities
B, & defined by

_"—C— §=kr1.

B= 72
()

The solid lines in Fig. 2 correspond to (4.1). a; in (4.1) are given by (3.14). The curves are drawn
for the special choice of n*=0:6, # =3, »;=w,=1 =03, and for two values of vy =10,
v = 100. Here we write

_ P _ Ao 23]
9=B = a1, =8
P2 g 2(Aa+,un:x) @ Y H2
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A
50 n?=06
F=3
91 = \)‘? =03
0T Achenbach - Herrmann(3]

e ]'-100
y/4 N Wheeler - Mura (7]

=10

PN Achenbach~Herrmann[3]
e .

30

1o BEE—/— , v
0 10 20 0 £

Fig. 2. Dispersion curves for transverse waves in the direction of fibres.

In the above, v, and v, are Poisson’s ratios of the fibres and of the matrix, respectively. The
dashed lines correspond to the theory of Achenbach and Herrmann([3] for randomly arranged
fibres. The dot-and-dashed lines are taken from [7]. Using the Ritz method, Wheeler and Mura[7]
give approximate curves for a fibre reinforced material with the fibres arranged in a square array.
Figure 3 shows the lowest modes of the dispersion curves for the longitudinal wave propagating
in the direction of the fibres. The solid lines correspond to (4.2) of this paper, the dot-and-dashed
lines are taken from [7]. In the theory evolved in [3] this kind of wave is non-dispersive.
Figures 2 and 3 show a good agreement between all the curves for small wave numbers, i.e.
for long wave lengths. A certain discrepancy in Fig. 2 for k -» 0 between the approximate curves
taken from [7] on the one hand, and the curves of the present effective stiffness theory and those
of the theory of [3] on the other hand, should be ascribed to the circumstance that a square array
of fibres was considered in [7]. Unfortunately, the exact dispersion curves are not at our disposal.

A p2=06
0y 100 =3
7= V=v=03
8:0 \
. F=100
50 \/ Wheeler -Mura [7]
40+ ‘\. P r=n
+ \§:h
20 w0 —
Wheeler~Mura [#]
a + + } §
0 10 20 30

Fig. 3 Dispersion curves for longitudinal waves in the direction of fibres.

5. PROPAGATION OF PLANE HARMONIC WAVES IN A
HOMOGENEOUS TRANSVERSELY ISOTROPIC MATERIAL

Propagation of plane harmonic waves in a homogeneous transversely isotropic material was
examined by Postma[4]. We shall show that the structure of these waves in this continuum is the
same as their structure in the effective stiffness theory presented in the foregoing paragraphs.
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Let us write the constitutive equations of a transversely isotropic medium axially symmetric
about the x;-axis in the form

711 = Cri€n + Crz€n + Crs€ss,
T22= Ci2€11 + Cri€n+ Crséss,
7313 = Cra€11 + Ciz€nn+ Csséan,
Tia= 2C44€13, T3 = 2C44€23, Ti2 = Ces€12,
with
C(,(, = Cu - Ciz.
There are five independent constants, Cy;, Ciz, Cis, Cs; and Ca. For the wave

_ ik {nyXx,brax,—ct)
u;—U,-e 2 X PR Xy

the displacement equations of motion lead to the following equations of the amplitudes U:

(ﬁc2 -3 Cans= C44n32) U, =0, 6.1
(ﬁcz - Cnn — C«'hz) U, ~(Ciz+ CodnansUs =0, (5.2)
_(CH + C«)nzrh U,+ (ﬁCz - Cunzz - Caafl;z) U;=0. (5.3)

In the above p stands for the mass density. (5.1) corresponds to system I, (5.2) and (5.3)
correspond to system II of Section 4. Using the same procedure as in Section 4 we get the
following waves and the corresponding phase velocities ¢

(a) The transverse wave propagating in the direction of the fibres:

c2=£_—.
g

(b) The longitudinal wave propagating in the direction of the fibres:

Css
02 = —,

p

(c) The longitudinal wave propagating normal to the fibres:

(d) The transverse wave polarized in the x,x.-plane propagating normal to the fibres:

=S
2
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{e) The transverse wave polarized in the x,x;-plane propagating normal to the fibres:

C
CZ — 4‘4‘

p

(f) The transverse wave polarized in the x,x;-plane propagating in the direction parallel to the
X2xa-plane:

52C4 - ﬁcz{nzz(cn + C«) + n32(C33 + Call+ n;cncm + n34C33C44
+ nfn;z[Cia +CCss— (Cns + C44)2] =,

The effective stiffness theory presented in this paper is a long-wave approximation of the
dynamical behaviour of a fibre reinforced composite. For the statical problems we replace the
composite by a homogeneous transversely isotropic medium. In order to obtain the material
constants we compare the phase velocities of the non-dispersive waves (a~f) in the homogeneous
transversely isotropic material with the phase velocities °c at vanishing wave numbers in (4.3) to
(4.8) for the corresponding waves (a~f) in the effective stiffness model. The result is

2 2
Qielas+ G1o  Galast+ Uy
C“ = = .

dos dag

_ tis(@xn t an)+ 2ais

Cx

a2+ Aoz
2 2 2 2
a8z~ a3) — 2,888 + Gaslds + as)
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On substituting for a; from (3.14) we finally arrive at the sought-for moduli
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Here we write

_-w) 2w
2w ST

8 a=12.

6. CONCLUDING REMARKS

There remains the open question of what is generally the relation between the moduli (5.5)
which we get for vanishing wave numbers, and the effective moduli which are a geometrically
weighted average of the properties of the constituents. For a laminated medium we know the
exact effective moduli and the exact dispersive curves, and in this case the two systems of moduli
are equal.

For the case of laminated composites a higher approximation of the effective stiffness theory
was elaborated in [8], with the stress vector continuous at the layer interfaces. This second-order
approximation provided a substantially better approximation to the exact elasticity solution for
shorter wave lengths but the phase velocities °c at vanishing wave numbers were the same as in
the first approximation and thus the same as the exact °c [1].

The effective stiffness theory presented herein for fibre reinforced composites is the simplest
approximation involving continuity of the displacements at the interfaces while leaving the stress
vector discontinuous. We do not know the exact °c for this case. As the displacement (2.6)-(2.7)
is kinematically admissible the moduli (5.5) should be larger or equal to those obtained from the
exact °c.

For a fibre reinforced composite with a hexagonal layout of fibres, Hashin and Rosen[6]
reported the lower and the upper bound of the effective moduli. The moduli defined by (5.5) lie
within these bounds. For randomly distributed fibres[6] states the approximate magnitudes of
Cis, Cs3, Caa and 2(C11 + Cia), for 3(Cy ~ Cy2) giving again the lower and the upper bound. It was
found that Cis, Cs3, Cs and 3(Cy, + Ci2) calculated from (5.5) for y = 10, v = 100 and 77€{0, 1) are
very close to the approximate effective moduli given in Ref. [6] for randomly distributed fibres.
The difference is less than 1 per cent.
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